FAST HIGH VOLTAGE TRANSISTOR SWITCHES

DESCRIPTION

The ultra fast transistor switches of the UF series are distinguished above all by an extremely short rise time which remains constant over a wide range of operating voltage and load. BEHLKE solid-state switches are actively controlled devices (no avalanche technique) and have a highly reliable and reproducible switching behaviour regardless to temperature and load conditions. Compared to conventional high voltage switching elements, such as gas discharge tubes and spark gaps, BEHLKE switches do not show aging effects and achieve life times by several orders of magnitude higher than any other classical high voltage switch.

The switches are very easy to handle and only require a well stabilized +5.00 VDC auxiliary supply and a TTL-compatible trigger signal at the control side. The trigger can be any positive going pulse of at least 50 ns width and 3 to 10 volts amplitude. Due to the schmitt-trigger input characteristics and the very high signal amplification neither the switching behaviour nor the turn-on rise time will be influenced by the waveshape of the trigger pulse. After being triggered the switch turns on for about 100 nanoseconds. Shorter on-times respectively pulses of a few nanoseconds duration may simply be generated by means of the on-time options OT-5ns, OT-10ns and OT-20ns. Any other customized on-time above 20 ns is possible if the turn-off rise time is of secondary interest. Above 30 ns the on-time can also be adjusted by means of option OT-P (Programmable On-Time) within certain limits. The recovery time after a switching cycle is less than $1 \mu \mathrm{~s}$, making burst frequencies of up to 1 MHz possible. Burst frequencies of up to 10 MHz can be realized on a custom design base.

The internal driving circuit provides signal conditioning, auxiliary voltage monitoring, frequency limitation and temperature protection. The operating conditions are indicated by three built-in LEDs. In case of a fault (auxiliary voltage <4.75 VDC, frequency >f(max) and case temperature $>75^{\circ} \mathrm{C}$) the red LED will indicate the error and the switch is inhibited for at least 1 sec respectively for the duration of the fault condition. At the same time a TTL compatible fault signal is generated (Low=Fault). The reset time in case of over temperature can last some minutes depending on the ambient conditions. A green LED indicates "Ready for Operation" and a yellow one flashes if the switch has been triggered succesfully.

The standard plastic housing is the cost efficient solution in low power / low frequency applications with up to 5 watts power dissipation. Above that the cooling option CF (non-isolated cooling fins) should be applied. Another cooling method is given by the grounded cooling flange, available as option GCF. The advantages are simplified heat removal by grounded heat sinks and less installation space, but the option GCF also implicates an increased coupling capacitance and consequently also slower rise times. Depending on circuitry, t_{r} may increase by approximately 10 to 50% when option GCF is used.

CIRCUIT DESIGN RECOMMENDATIONS

In order to achieve the maximum turn-on rise time and the best HV pulse shape, all leads and circuit paths should be of lowest possible inductance. This can be achieved by means of very wide and short circuit tracks on the printed circuit board, if necessary in several layers (multi layer PCB). Part components such as Rs, СвР and Св must be "inductance-free" and should only be connected with shortest possible wires / circuit tracks. Ground conducting tracks including the logic ground must be connected to a common ground point (star-type ground). Induction loop areas of dynamically current-carrying circuit paths should always be as small as possible. HV wiring and control circuitry should always be kept on distance. For further design recommendations please refer to the general instructions.

HTS 30-08-UF $3000 \mathrm{v} / 80 \mathrm{~A}$ HTS 30-06-UF 3600 V / 60 A

TECHNOLOGY
Patented ELECTRO OPTICS

ULTRA FAST
 ULTRA COMPACT

Test Circuit (High-Side Switch)

Dig. Scone
Tektronix
TDS 684 C
R
Tektronix
TD 684 C
$\mathrm{Z}=50 \mathrm{Om}$ $\mathrm{Z}=50 \mathrm{Ohm}$

TECHNICAL DATA

Ordering Informations

HTS 30-06-UF	Transistor switch, 3600 VDC, 60 Amps.
HTS 30-08-UF	Transistor switch, 3000 VDC, 80 Amps.
Option OT-5ns	On-time 5 ns
Option OT-10ns	On-time 10ns
Option OT-20ns	On-time 20ns
Option OT-C	Customized on-time, pls. indicate on-time
Option OT-P	Programmable on-time (only for tp >30 ns)
Option ST	Stage tapping, pls. indicate tapping position

UF

Option OT-5n
Option OT-10ns
Option OT-20ns
Option OT-C
Option ST

Transistor switch, 3600 VDC, 60 Amps.

On-time 5 ns
On-time 10ns

Customized on-time, pls. indicate on-time
Stage tapping, pls. indicate tapping position

Option UL Flame retardend casting resin according to UL94-VO
Option CF
Option GCF
Option GCF-W
Option FC
Option HFB
Option IPC

Non-isolated cooling fins, $\mathrm{d}=0.5 \mathrm{~mm}$, height 35 mm Grounded cooling flange
Water cooler plate for the above cooling flange
Flat case, 19 mm height
High frequency burst, for >10 pulses within < $100 \mu \mathrm{~s}$ Integrated part components (e.g. serial resistor or buffer capacitor) according to customers specification

