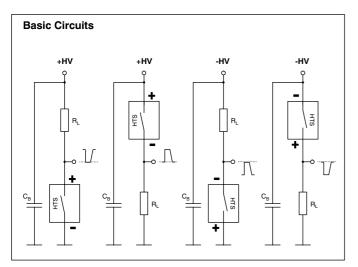
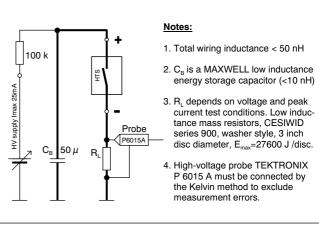
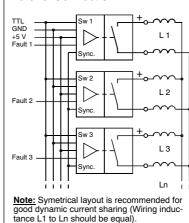
FAST HIGH VOLTAGE THYRISTOR SWITCHES

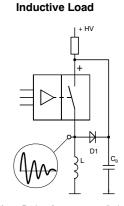

These solid-state switches are designed for high voltage high peak current switching applications such as shock wave generators, flash lamp drivers, crow bar circuits and surge generators. The switching modules contain a large number of reverse blocking thyristors (SCR) with a special chip architecture for high surge conditions. Several hundred of these SCR's, each with its own low-impedance gate drive, are connected in series and in parallel to ensure the extreme di/dt of up to 32 kA/ μ s. The safe and synchronous control of all SCR's is performed by a patented driver which provides also the high galvanic isolation necessary for high-side circuits and safety-relevant applications.

In contrast to conventional high voltage switches like spark gaps, electron tubes, gas discharge tubes and mechanical switches, thyristor switches of the series HTS-SCR show very low jitter and stable switching characteristics independent of temperature and age. The mean time between failures (MTBF) is by several orders of magnitude higher than that of the classical HV switches.


An interference-proof control circuit provides signal conditioning, auxiliary voltage monitoring, frequency limitation and temperature protection. In case of false operating conditions the switches are immediately inhibited and a fault signal is generated. Three LED's indicate the operating state. A special synchronization input/output (Sync.) allows a simple parallel connection of up to 50 switching modules to multiply the turn-on peak current capability.

The switches are triggered by a positive going pulse of 3-10 Volts. The switching behaviour will not be influenced by the trigger rise time or the trigger amplitude. After being triggered the switches remain in on-state until the load current drops below the holding current (typical thyristor behaviour). The turn-off process requires insofar a current commutation, a current limitation or a current bypass. Capacitor discharge applications with charging currents less than the holding current do not require special turn-off measures. In all other cases the switches can be turned off by a slight current reversal, which is given in the most pulsed power applications anyway. If the current reversal is higher than 10% and if the periodic duration of the current is shorter than 1 ms, a freewheeling diode (e.g. Behlke FDA) must be used to avoid hard turn-off, which can damage the switching module under certain circumstances. Please compare also the application note below.


The plastic case is the cost-effective standard package in low frequency applications with low average power. For higher load the Maximum Continuous Power Dissipation $P_{d(max)}$ can be increased by optional cooling fins which are available in different sizes for a Pd(max) of up to 1.5 kW in air (forced convection >4m/s) and approximately up to 15 kW in liquids. For further design recommendations please refer to the general instructions.



Parallel Connection

<u>Note:</u> D1 is a fast recovery diode with Kiloamps peak current capability (E.g. Behlke Series FDA)

TECHNICAL DATA

Specification	Symb.	Condition / Comment			120-1600-SCR	160-1600-SCR	Unit
Maximum Operating Voltage	V _{O(max)}	$I_{off} < 600 \sigma ADC, T_{case} = 70^{\circ}C$			12000	16000	VDC
Minimum Operating Voltage	V _{O(min)}				()	VDC
Typical Breakdown Voltage	V _{br}	$I_{off} > 3 \text{ mADC}, T_{case} = 70 \text{ °C}$			13200	17600	VDC
Maximum Off-State Current	I _{off}	0.8 x V _O , T _{case} = 25°C			1(00	μADC
Galvanic Isolation	VI	HV side against control side, continuously		40000	40000	VDC	
Maximum Turn-On Peak Current	I _{P(max)}	$T_{case} / T_{fin} = 25^{\circ}$ C, half sine. $t_p < 100 \ \mu$ s, duty cycle <1%		160	000		
		Pls.consult factory for	t _p < 500 μs, duty cycl	e <1%	80	00	
		higher temperatures and	t _p < 1 ms, duty cycle	e <1%	54	40	
		other waveshapes.	t _p < 10 ms, duty cycle	e <1%	32	00	ADC
Max. Non-repetitive Peak Current	I _{P(nr)}	$T_{case} / T_{fin} = 25^{\circ}C$ Half sine single pulse, tp<200µs		e, tp<200µs	32000		
		Half sine single pulse, tp< 20µs		64000		ADC	
Max. Continuous Load Current	IL.	T _{case} / T _{fin} = 25°C	Standard plastic cas	e	5.	76	
	2		Opt. 04, cooling fins	(air >4m/s)	5	6	ADC
Typical Holding Current			T _{case} / T _{fin} = 25°C	, ,	1(00	
			$T_{case} / T_{fin} = 70^{\circ}C$			0	mADC
Typical On State Voltage	V _{sat}	$T_{case} / T_{fin} = 25^{\circ}C$	0.001 x I _{P(max)}		13	17	
Typical On-State Voltage	v _{sat}				14	19	
		t _p < 10μs, duty cycle <1%	0.01 x I _{P(max)}		23	30	
			0.1 $\times I_{P(max)}$		60		
			1.0 x I _{P(max)}			80	VDC
Typical Turn-On Delay Time	t _{d(on)}	0.1 I _{P(max)} , 0.8 x V _{O(max)} resistive load, 50-50%		450	470	ns	
Typical Turn-On Rise Time	t _{r(on)}	Resistive load, 10-80 %	0.1 x V _{O(max)} , 0.1 x I _P	(max)	550	550	
			0.8 x V _{O(max)} , 0.1 x I _P		170	170	
			0.8 x V _{O(max)} , 1.0 x I _P	(max)	450	490	ns
Typical Turn-Off Time	t _{off} , t _q	$T_{case} / T_{fin} = 25^{\circ}C$, inductive	0.01x I _{P(max)}		1	0	
		load / free wheeling diode	0.1 x I _{P(max)}		3	5	
			1.0 x I _{P(max)}		9	0	μs
Critical Rate-of-Rise of Off-State Voltage	dv/dt	@ $V_{O(max)}$, exponential waveform			75	100	kV/µs
Maximum On-Time	t _{on(max)}	Depends on holding current only. See product description.			unlimited		
Internal Driver Recovery Time	t _{rc}	Standard devices With option 01		1000			
				100		μs	
Typical Turn-On Jitter	t _{j(on)}	$V_{aux} / V_{tr} = 5.0 \text{ VDC}$			1		ns
Max. Cont. Switching Frequency	f _(max)	Please note $P_{d(max)}$ limitations, increased $f_{(max)}$ on request		500	350	Hz	
Maximum Burst Frequency	f _{b(max)}	With option 01, $I_{P(max)}$ < 16kA, please consult factory		1			
(Triggered)	. ,	With option 01, $I_{P(max)} < 1kA$, please consult factory)		10		kHz	
Maximum Continuous Power	$P_{d(max)}$		Standard plastic case		52	65	
Dissipation		T _{fin} = 25°C Option 0	cooling fins (air stream >4m/s)		450	600	Watts
Linear Derating			plastic case		0.866	1.083	
J.			, 4, cooling fins (air strea	m > 4m/s)	10	13.33	W/K
Temperature Range	To	Standard plastic case	· · · · · · · · · · · · · · · · · · ·	,	-40	85	°C
Coupling Capacitance	C _c	HV side against control side			210	290	pF
Auxiliary Supply Voltage	V _{aux}	Stabilized to ∂ 5%			5.0 (2 5%)		VDC
Auxiliary Supply Current	I _{aux}	@ f _(max)			600		mADC
Trigger Voltage Range	V _{tr}	Switching behaviour cannot be influenced by trigger quality			3-10		VDC
Fault Signal Output	v tr	Short circuit proof, source/sink current Ready = High			>4.0		100
		max.10mADC. See product description. Fault = Low		<0.8		VDC	
Synchronization Insut/Outsut		Short circuit proof, output pulse 4 VDC / 1ms					
Synchronization Input/Output		By LED's: Green=Ready, Yellow=Trigger, Red=Failure			-		-
Operating Mode Indication		Low inductance srew terminals for printed circuit boards					-
High Voltage Connection					004-40224		-
Dimensions		Standard plastic case, reduced size on request.		204x103x31	253x103x31	3	
		With option 04 (Please consult factory for detailed drawings)		204x103x66	253x103x66	mm ³	
Weight		Standard plastic case, reduced weight on request.		1950	2400		
		With option 04.			2590	3250	g

Ordering Informations

HTS 120-1600-SCR HTS 320-800-SCR Option 01 Thyristor switch, 12 kVDC, 16 kA(pk) Thyristor switch, 16 kVDC, 8 kA (pk) High frequency burst

Option 02 Option 03 Option 04

Flame retardend casting resin UL 94-V0 Increased thermal conductivity (plastic case only) Cooling fins (Fins are on high voltage potential!)